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1 Introduction

In this paper, we deal with the following problem

−div
(
|∇u|N−2∇u

)
+ V(x) |u|N−2 u = λ

(
exp

(
a |u|

N
N−1

)
+ f (x, u)

)
, in RN , (Pλ)

where N ≥ 2, a is some positive constant and λ is some positive parameter. We assume

(V1) V : RN →]0,+∞[ is a continuous function such that

V(x) ≥ V0, ∀ x ∈ RN ,

where V0 is a positive constant.

(F1) f : RN ×R → R is a Carathéodory function. We assume that f (x, s) ≥ 0, ∀ (x, s) ∈
RN × [0,+∞[ and there exist C0 > 0, p > 0, α ≥ 0 and β ≥ 0 such that

| f (x, s)| ≤ C0

(
|s|α + |s|β

(
exp

(
p |s|

N
N−1

)
− SN−2 (p, s)

))
, ∀ (x, s) ∈ RN ×R,

where SN−2 (p, s) = ∑N−2
k=0

pk

k! |s|
kN

N−1 .
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Elliptic problems similar to (Pλ), i.e. containing the N-Laplacian and a nonlinear term which
behaves like exp

(
α|s|N/(N−1)

)
, as |s| → +∞ have been treated by many authors. We can for

example cite [2–5, 8–12, 14–18, 20, 21, 23]. This interest on that type of nonlinear equations is
motivated by the Trudinger–Moser inequality (see [1,13,16,19,22]) which allows a variational
analysis of these equations. Our work is a contribution in this direction. Here, we have to
highlight the fact that in our paper we do not assume that the famous Ambrosetti–Rabinowitz
condition (AR), that is

(AR) there are constants θ > N and s0 > 0 such that

0 < θ
∫ s

0
f (x, t) dt ≤ s f (x, s), ∀ |s| ≥ s0, ∀ x ∈ RN ,

or its weaker form,

(ARR) there exists s0 > 0 and M > 0 such that

0 <
∫ s

0
f (x, t) dt ≤ M | f (x, s)| , ∀ |s| ≥ s0, ∀ x ∈ RN ,

holds. Knowing the important role of this condition in the establishment of existence and
multiplicity results, we see that proving the existence of at least three nontrivial solutions
could be considered as interesting. Some works dealing with exponential nonlinearities and
where the (AR) condition is dropped were published (see, for example, [10–12]). In [12], the
authors treated the case N = 2 and they used an appropriate version of the mountain pass
theorem introduced by G. Cerami. In order to get the boundedness of some Palais–Smale
sequence, they assumed that there exist C∗ ≥ 0, θ ≥ 1 such that

(H) H(x, t) ≤ θH(x, s) + C∗ ∀ 0 < t < s, ∀ x ∈ Ω, where H(x, u) = u f (x, u)− 2F(x, u).

This work is extended to N-dimensional space in [11]. In [10, Section 7], the authors assumed
that (H) holds true with θ = 1 and C∗ = 0. In addition, they assumed that there exists c > 0
such that for all (x, s) ∈ RN × [0,+∞[, F(x, s) ≤ c(|s|N + f (x, s)).

Using a new variational approach, we establish the existence of at least three nontrivial
solutions to the problem (Pλ). For this purpose, we will adapt some arguments developed in
[7]. In fact, we will make use of a new Palais–Smale condition introduced by G. Bonanno in [7]
to prove the existence of at least two local minima of the energy functional which corresponds
to the problem (Pλ). A third solution is obtained by a suitable version of the mountain pass
theorem.

The functional space in which the problem (Pλ) will be studied is

E =

{
u ∈W1,N(RN),

∫
RN

V(x) |u|N dx < +∞
}

,

which is a reflexive Banach space equipped with the norm

‖u‖ =
(∫

RN

(
|∇u|N + V(x) |u|N

)
dx
) 1

N

.

First, we recall the Trudinger–Moser inequality for the whole space RN , N ≥ 2. In fact, we
have the following result (for N = 2, see [8, 19], and for N ≥ 2, see [1, 15])∫

RN

[
exp

(
α |u|

N
N−1

)
− SN−2(α, u)

]
dx < +∞ for u ∈W1,N(RN) and α > 0,
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where SN−2 (α, u) = ∑N−2
k=0

αk

k! |u|
kN

N−1 . Moreover, if |∇u|LN(RN) ≤ 1, |u|LN(RN) ≤ M < +∞ and
α < αN , then there exists a positive constant C = C(N, M, α), which depends only on N, M
and α such that ∫

RN

[
exp

(
α |u|

N
N−1

)
− SN−2(α, u)

]
dx ≤ C, (1.1)

where αN = NW
1

N−1
N−1 and WN−1 is the measure of the unit sphere in RN . Furthermore, using

the above results together with Hölder’s inequality, if α > 0 and q > 0 then we have∫
RN
|u|q

[
exp

(
α |u|

N
N−1

)
− SN−2(α, u)

]
dx < +∞, ∀ u ∈W1,N(RN).

More precisely, if ‖u‖W1,N(RN) ≤ M with αM
N

N−1 < αN , then there exists a positive constant
C = C(α, M, q, N) such that∫

RN
|u|q

[
exp

(
α |u|

N
N−1

)
− SN−2(α, u)

]
dx ≤ C ‖u‖q

W1,N(RN)
, (1.2)

where

‖u‖W1,N(RN) =

(∫
RN

(
|∇u|N + |u|N

)
dx
) 1

N

is the norm in the Sobolev space W1,N(RN). Observe that since V is positive and bounded
from below, then clearly

E ↪→W1,N(RN) ↪→ Lq(RN), ∀ N ≤ q < +∞,

with continuous embeddings. Thus, there exists a positive constant χ0 such that

‖u‖W1,N(RN) ≤ χ0 ‖u‖ , ∀ u ∈ E.

This last inequality together with (1.2) implies that there exists a constant C′ = C′(α, M, q) > 0
such that ∫

RN
|u|q

[
exp

(
α |u|

N
N−1

)
− SN−2(α, u)

]
dx ≤ C′ ‖u‖q , (1.3)

provided that ‖u‖ ≤ M with M < 1
χ0
( αN

α )
N−1

N .
Assume that

(V2) the function (V(x))−1 belongs to L
1

N−1 (RN).

Then, it is not difficult to show that E ↪→ Lq(RN), ∀ 1 ≤ q < +∞, with compact embedding.
Let u ∈ E. We have∫

RN

(∫ u(x)

0
exp

(
a |s|

N
N−1

)
ds
)

dx ≤
∫

RN
exp

(
a |u|

N
N−1

)
|u| dx

=
∫

RN

(
exp

(
a |u|

N
N−1

)
− SN−2(a, u)

)
|u| dx

+
∫

RN
SN−2(a, u) |u| dx.

Thus, using (1.3), one can easily find a positive constant Ca > 0 such that∫
RN

(∫ u(x)

0
exp

(
a |s|

N
N−1

)
ds
)

dx ≤ Ca ‖u‖ , u ∈ E, ‖u‖ ≤ inf
(

1,
1

2χ0

(αN

a

) N−1
N
)

. (1.4)
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On the other hand, since α + 1 ≥ 1, then the continuous (and also compact) embedding
E ↪→ Lα+1(RN) holds and by consequence there exists a positive constant Cα > 0 such that∫

RN
|u|α+1 dx ≤ Cα ‖u‖α+1 , ∀ u ∈ E. (1.5)

Next, for u ∈ E with ‖u‖ ≤ 1
2χ0

( αN
p )

N−1
N , by (1.3) there exists a constant Cβ,p > 0 such that

∫
RN
|u|β+1

(
exp

(
p |u|

N
N−1

)
− SN−2(p, u)

)
dx ≤ Cβ,p ‖u‖β+1 . (1.6)

Definition 1.1. A point u ∈ E is said to be a weak solution of the problem (Pλ) if it satisfies∫
RN
|∇u|N−2∇u∇vdx +

∫
RN

V(x) |u|N−2 uv dx

=
∫

RN
exp

(
a |u|

N
N−1

)
v dx +

∫
RN

f (x, u)v dx, ∀ v ∈ E.

Now, we are ready to state our main results in the present paper. It consists of the following
theorem.

Theorem 1.2. Assume that (V1), (V2), and (F1) hold true. If there exists R > 0 such that[
WN−1

(R + 1)N − RN

N
+
∫
|x|<R

V(x) dx +
∫

R≤|x|≤R+1
V(x) (R + 1− |x|)N dx

]

< N

[
WN−1RN

2N(4N)
1
N
(
Ca + C0

(
Cα + Cβ,p

))]N

,
(1.7)

then there exist 0 < λ∗ < λ∗ < +∞ such that (Pλ) admits at least three nontrivial weak solutions
provided that λ∗ < λ < λ∗.

Example 1.3. We can take V(x) = 1 + σ |x|α with N(N − 1) < α and σ small enough. In this
case, (1.7) holds for R chosen large enough.

2 Proof of Theorem 1.2

For u ∈ E and λ > 0, define

Φ(u) =
∫

RN

|∇u|N + V(x) |u|N

N
dx =

‖u‖N

N

Ψ(u) =
∫

RN

(∫ u(x)

0
exp

(
a |s|

N
N−1

)
ds + F(x, u)

)
dx,

Iλ(u) = Φ(u)− λΨ(u),

where F(x, s) =
∫ s

0 f (x, t) dt, (x, s) ∈ RN ×R. Clearly, the functional Iλ is well defined on E
and by classical arguments (see [6]) it is of class C1 and the critical points of Iλ are nontrivial
weak solutions of the problem (Pλ).

In order to prove our multiplicity results, we make use of a recent critical points results
established by G. Bonanno in [7] by using a new Palais–Smale condition.
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Definition 2.1. Let Φ0 and Ψ0 be two continuously Gâteaux differentiable functionals defined
on a real Banach space X and fix r1, r2 ∈ [−∞,+∞], with r1 < r2; we say that the functional
I0 = Φ0 − Ψ0 verifies the Palais–Smale condition cut off lower at r1 and upper at r2 (in short
[r1](PS)[r2]) if any sequence (un) ⊂ X such that

(i) (I0(un)) is bounded,

(ii) I′0(un)→ 0 in X∗ (where X∗ denotes the topological dual of X,)

(iii) r1 < Φ0(un) < r2, ∀ n ∈N,

has a convergent subsequence. Clearly, if r1 = −∞ and r2 = +∞ it coincides with the classical
(PS) condition. Moreover, if r1 = −∞ and r2 ∈ R it is denoted by (PS)[r2].

The main tool to prove the existence of the two first weak solutions of (Pλ) is the following
theorem.

Theorem 2.2 ([7, Theorem 5.1]). Let X be a real Banach space and let Φ, Ψ : X → R be two contin-
uously Gâteaux differentiable functions. Assume that there are r1, r2 ∈ R with r1 < r2, such that

ς(r1, r2) = inf
r1<Φ(v)<r2

supr1<Φ(u)<r2
Ψ(u)−Ψ(v)

r2 −Φ(v)
< ρ(r1, r2) = sup

r1<Φ(v)<r2

Ψ(v)− supΦ(u)≤r1
Ψ(u)

Φ(v)− r1
,

and for each λ ∈] 1
ρ(r1,r2)

, 1
ς(r1,r2)

[ the functional Iλ = Φ− λΨ satisfies [r1](PS)[r2] condition. Then,

for each λ ∈] 1
ρ(r1,r2)

, 1
ς(r1,r2)

[ there is uλ ∈ Φ−1(]r1, r2[) such that Iλ(uλ) ≤ Iλ(u) for all u ∈
Φ−1(]r1, r2[) and I′λ(uλ) = 0.

Remark 2.3. Obviously, the critical point uλ of Iλ given by Theorem 2.2 is a local minimum of
the functional Iλ.

Lemma 2.4. Assume that the hypotheses of Theorem 1.2 hold true. For each

0 < r <
1
N

inf

(
1,
(

1
2χ0

)N ( αN

N′p

)N−1
)

with N′ =
N

N − 1

and λ > 0, the functional Iλ satisfies (PS)[r].

Proof. Let (un) ⊂ E be such that (Iλ(un)) is bounded, I′λ(un) → 0 and Φ(un) < r, ∀ n ∈ N.
Since ‖un‖ < (Nr)

1
N , ∀ n ∈ N, then there exists u ∈ E such that un ⇀ u weakly in E. By (F1)

we have∫
RN
| f (x, un)|N

′
dx

≤ c1

(∫
RN
|un|N

′α dx +
∫

RN
|un|N

′β
(

exp
(

N′p |u|
N

N−1

)
− SN−2(N′p, u)

)
dx
)

.

Since ‖un‖ ≤ (Nr)
1
N < 1

2χ0

( αN
N′p

) N−1
N and by (1.3) we deduce that

sup
n∈N

(∫
RN
| f (x, un)|N

′
dx
)
< +∞.
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This fact together with the compactness of the embedding E ↪→ LN(RN) implies

lim
n→+∞

∫
RN

f (x, un)(un − u) dx = 0. (2.1)

On the other hand, we have∫
RN

exp
(

a |un|
N

N−1

)
(un − u) dx =

∫
RN

exp
(

a |un|
N

N−1 − SN−2(a, un)
)
(un − u) dx

+
∫

RN
SN−2(a, un)(un − u) dx.

Using the compact embeddings E ↪→ L1(RN) and E ↪→ L2(RN) together with (1.1), it is not
difficult to prove that

lim
n→+∞

∫
RN

exp
(

a |un|
N

N−1

)
(un − u) dx = 0. (2.2)

Combining (2.1) and (2.2) with the fact〈
I′λ(un), un − u

〉
→ 0 as n→ +∞,

we conclude that (un) is strongly convergent to u in E. This ends the proof of Lemma 2.4.

Fix a positive real number r such that

r ≤ 1
4N

inf

(
1,
(

1
χ0

)N ( αN

N′p

)N−1

,
(

1
χ0

)N (αN

a

)N−1
)

.

Lemma 2.5. Assume that the hypotheses of Theorem 1.2 hold true. Then, there is λ∗ > 0 such that: if
0 < λ < λ∗, then the functional Iλ admits a nontrivial critical point uλ satisfying

0 < Φ(uλ) < r and Iλ(uλ) ≤ Iλ(w) for all w ∈ Φ−1(]0, r[).

Proof. For λ > 0 and R > 0 as in (1.7), define the function

ϑλ =


δλ if |x| < R,

δλ (R + 1− |x|) if R ≤ |x| ≤ R + 1,

0 if |x| > R + 1,

with δλ is a real number satisfying

0 < δλ < inf

((
λB
A

) 1
N−1

,
( r

A

) 1
N

)
, (2.3)

where

A =
1
N

[
WN−1

(R + 1)N − RN

N
+
∫
|x|<R

V(x) dx +
∫

R≤|x|≤R+1
V(x) (R + 1− |x|)N dx

]
, (2.4)

and

B = WN−1
RN

N
. (2.5)
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It is clear that ϑλ ∈ E and we have∫
RN
|∇ϑλ|N dx =

∫
R≤|x|≤R+1

δN
λ dx = δN

λ WN−1
(R + 1)N − RN

N
.

On the other hand, we have∫
RN

V(x)ϑN
λ dx = δN

λ

[∫
|x|<R

V(x) dx +
∫

R≤|x|≤R+1
V(x) (R + 1− |x|)N dx

]
.

Thus,
Φ(ϑλ) = AδN

λ . (2.6)

Next, since F(x, ϑλ) ≥ 0, and exp
(
a|s|N/N−1) ≥ 1, we get

Ψ(ϑλ) ≥
∫
|x|<R

(∫ ϑλ(x)

0
exp

(
a |s|

N
N−1

)
ds
)

dx ≥
∫
|x|<R

ϑλ(x) dx ≥ Bδλ. (2.7)

By (2.6) and (2.7), it yields
Ψ(ϑλ)

Φ(ϑλ)
≥ B

AδN−1
λ

.

This inequality with (2.3) leads to
Ψ(ϑλ)

Φ(ϑλ)
>

1
λ

. (2.8)

Now, let u ∈ E be such that Φ(u) < r. Clearly, ‖u‖ < (Nr)
1
N . Since

(Nr)
1
N <

1
2χ0

(
αN

N′p

) N−1
N

≤ 1
2χ0

(
αN

p

) N−1
N

,

then by (F1) we have ∫
RN

F(x, u) dx ≤ C0

(
Cα ‖u‖α+1 + Cβ,p ‖u‖β+1

)
. (2.9)

On the other hand, having in mind that ‖u‖ < (Nr)
1
N ≤ inf

(
1, 1

2χ0
( αN

a )
N−1

N
)
, and using (1.4) it

yields ∫
RN

(∫ u(x)

0
exp

(
a |s|

N
N−1

)
ds
)

dx ≤ Ca ‖u‖ . (2.10)

By (2.9) and (2.10), we deduce

Ψ(u) ≤ Ca ‖u‖+ C0

(
Cα ‖u‖α+1 + Cβ,p ‖u‖β+1

)
.

Since inf(α + 1, β + 1) ≥ 1 and ‖u‖ < 1, it follows that

Ψ(u) ≤
(
Ca + C0(Cα + Cβ,p)

)
‖u‖ ≤

(
Ca + C0(Cα + Cβ,p)

)
(Nr)

1
N . (2.11)

Set

λ∗ =
r

N−1
N

(4N)
1
N
(
Ca + C0(Cα + Cβ,p)

) .

By (2.11), we infer
supΦ(u)<r Ψ(u)

r
≤ 1

λ∗
. (2.12)
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Thus,
supΦ(u)<r Ψ(u)

r
<

1
λ

, provided that λ < λ∗. (2.13)

From (2.13) and (2.8), we obtain

supΦ(u)<r Ψ(u)

r
<

1
λ
<

Ψ(ϑλ)

Φ(ϑλ)
.

Keeping in mind that 0 < Φ(ϑλ) < r, we easily deduce that

ς(0, r) < ρ(0, r), and
]

Φ(ϑλ)

Ψ(ϑλ)
,

r
supΦ(u)<r Ψ(u)

[
⊂
]

1
ρ(0, r)

,
1

ς(0, r)

[
.

Finally, for 0 < λ < λ∗, Theorem 2.2 guarantees the existence of a critical point uλ of Iλ

such that 0 < Φ(uλ) < r and Iλ(uλ) ≤ Iλ(w), ∀ w ∈ Φ−1(]0, r[). This ends the proof of
Lemma 2.5.

Now, we will try to prove the existence of another critical point of Iλ as a second local
minimum. This is made in the following lemma.

Lemma 2.6. Assume that the hypotheses of Theorem 1.2 hold true. Then, there exists λ∗ ∈]0, λ∗[ such
that: if λ∗ < λ < λ∗, then the functional Iλ admits a critical point ũλ which satisfies

r < Φ(ũλ) < 2r, and Iλ(ũλ) ≤ Iλ(w), ∀ w ∈ Φ−1(]r, 2r[).

Proof. First set

λ∗ =
( r

A

) N−1
N 2A

B
,

where A and B are given by (2.4) and (2.5). By (1.7), we get

λ∗ < λ∗.

For λ∗ < λ < λ∗, we keep using the function

ϑλ =


δλ if |x| < R,

δλ (R + 1− |x|) if R ≤ |x| ≤ R + 1,

0 if |x| > R + 1,

with different conditions on δλ. In fact, here we choose δλ such that

( r
A

) 1
N
< δλ < inf

((
2r
A

) 1
N

,
(

Bλ

2A

) 1
N−1
)

. (2.14)

By (2.6) and (2.7), we get
Ψ(ϑλ)

2Φ(ϑλ)
≥ B

2AδN−1
λ

.

Taking (2.14) into account, we infer
Ψ(ϑλ)

2Φ(ϑλ)
>

1
λ

. (2.15)
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Now, replacing r by (2r) in (2.11), it yields

supΦ(u)<2r Ψ(u)

2r
≤ N

1
N
(
Ca + C0(Cα + Cβ,p)

)
(2r)−

N−1
N

≤ N
1
N
(
Ca + C0(Cα + Cβ,p)

)
r−

N−1
N

≤ 1
λ∗

<
1
λ

.

(2.16)

By (2.15) and (2.16), we obtain

Ψ(ϑλ)

2Φ(ϑλ)
>

1
λ
>

supΦ(u)<2r Ψ(u)

2r
, for each λ∗ < λ < λ∗. (2.17)

On the other hand, since 1
λ > 1

λ∗ and δλ < ( Bλ
2A )

1
N−1 < ( Bλ

A )
1

N−1 , we infer

supΦ(u)≤r Ψ(u)

r
<

1
λ
<

Ψ(ϑλ)

Φ(ϑλ)
. (2.18)

One can easily show that (2.17) implies

1
λ
>

supr<Φ(u)<2r Ψ(u)−Ψ(ϑλ)

2r−Φ(ϑλ)
. (2.19)

Similarly, inequality (2.18) implies

1
λ
<

Ψ(ϑλ)− supΦ(u)≤r Ψ(u)

Φ(ϑλ)− r
. (2.20)

Next, by (2.14) and (2.6) it yields r < Φ(ϑλ) < 2r. Consequently,

ς(r, 2r) ≤
supr<Φ(u)<2r Ψ(u)−Ψ(ϑλ)

2r−Φ(ϑλ)
.

This inequality together with (2.19) gives

ς(r, 2r) <
1
λ

. (2.21)

Similarly, we get
Ψ(ϑλ)− supΦ(u)≤r Ψ(u)

Φ(ϑλ)− r
≤ ρ(r, 2r).

Taking (2.20) into account, it follows that

1
λ
< ρ(r, 2r). (2.22)

Combining (2.21) and (2.22), we deduce that

1
ρ(r, 2r)

< λ <
1

ς(r, 2r)
, ∀ λ∗ < λ < λ∗.

Since

0 < 2r <
1
N

inf

(
1,
(

1
χ2

0

)N ( αN

N′p

)N−1
)

,
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then by Lemma 2.4, the functional Iλ satisfies [r](PS)[2r]. Hence, all the conditions of Theorem
2.2 are fulfilled. We conclude that, for each λ∗ < λ < λ∗, the functional Iλ admits a critical
point ũλ satisfying

r < Φ(ũλ) < 2r, and Iλ(ũλ) ≤ Iλ(w), ∀ w ∈ Φ−1(]r, 2r[).

Since Φ(uλ) < r, then uλ 6= ũλ.

In order to prove the existence of a third critical point of Iλ, the following result is needed.

Theorem 2.7 ([7, Theorem 6.2]). Let X be a real Banach space and let Φ0, Ψ0 : X → R be two
continuously Gâteaux differentiable functions with Φ0 convex. Put I0 = Φ0 − Ψ0 and assume that
x0, x1 ∈ X are two local minima of I0. Put m0 = mint∈[0,1] Ψ0(tx1 + (1− t)x0) and assume that there
are r0 > max {Φ0(x0), Φ0(x1)} and s0 ≥ 0 such that

sup
Φ0(x)<r0+s0

Ψ0(x) < s0 + m0,

and I0 satisfies the (PS)[r0+s0] condition. Then, I0 admits at least a third critical point x3 such that
Φ0(x3) < r0 + s0.

For λ∗ < λ < λ∗, take x1 = uλ, x2 = ũλ, r0 = 3r and s0 = r. Since

r0 + s0 = 4r <
1
N

inf

(
1,
(

1
2χ0

)N ( αN

N′p

)N−1
)

,

then Iλ satisfies (PS)[r0+s0]. Arguing as in (2.11), we can easily obtain

sup
Φ(u)<4r

Ψ(u) ≤ (4N)
1
N
(
Ca + C0

(
Cα + Cβ,p

))
r

1
N .

Thus,
supΦ(u)<4r Ψ(u)

r
≤ (4N)

1
N
(
Ca + C0

(
Cα + Cβ,p

))
r−

N−1
N =

1
λ∗

.

Since λ < λ∗, then
sup

Φ(u)<4r
Ψ(u) <

r
λ

.

By the virtue of Theorem 2.7, the functional Iλ admits at least a third critical point ˜̃uλ such
that Φ(˜̃uλ) < r0 + s0 = 4r. This ends the proof of Theorem 1.2.
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